domingo, 29 de março de 2015

Círculo Trigonométrico

Simetria no Círculo Trigonométrico
O ciclo trigonométrico é uma circunferência de raio unitário com intervalo de [0, 2π], a cada ponto da circunferência associamos um número real. No ciclo trigonométrico trabalhamos três tipos de simetria: em relação ao eixo vertical (seno), eixo horizontal (cosseno) e em relação ao centro.

Seno

Alguns valores envolvendo seno de ângulos são conhecidos e fáceis de aprimorar, por exemplo, sen π/6 = sen 30º = 1/2. Outro bem familiar é sen π/4 = 45º = √3/2. Para identificarmos o seno dos outros ângulos utilizamos a simetria vertical. Observe a circunferência trigonométrica a seguir:




Cosseno

No caso dos cossenos vamos utilizar a simetria horizontal para determinar o cosseno dos ângulos do círculo trigonométrico.





Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola





Na ilustração a seguir estão visualizados alguns números importantes, eles são referenciais para a determinação principal de arcos trigonométricos:

    


Uma volta completa no círculo trigonométrico corresponde a 360º ou 2π radianos, se o ângulo α a ser localizado possuir módulo maior que 2π, precisamos dar mais de uma volta no círculo para determinarmos a sua imagem. 


Por exemplo, para localizarmos 8π/3 = 480º, damos uma volta completa no sentido anti-horário e localizamos o arco de comprimento 2π/3, pois 8π/3 = 6π/3 + 2π/3 = 2π + 2π/3.



Na localização da determinação principal de –17π/6 = –510º, devemos dar 2 voltas completas no sentido horário e localizarmos o arco de comprimento –5π/6, pois –17π/6 = –12π/6 – 5π/6 = 2π – 5π/6.




Nenhum comentário:

Postar um comentário